Sameer Singh

Sameer Singh

Sameer Singh

Assistant Professor

About

Dr. Sameer Singh is an Assistant Professor of Computer Science at the University of California, Irvine. He is working on large-scale and interpretable machine learning applied to natural language processing. Sameer was a Postdoctoral Research Associate at the University of Washington and received his PhD from the University of Massachusetts, Amherst, during which he also worked at Microsoft Research, Google Research, and Yahoo! Labs on massive-scale machine learning. He was awarded the Adobe Research Data Science Faculty Award, was selected as a DARPA Riser, won the grand prize in the Yelp dataset challenge, and received the Yahoo! Key Scientific Challenges fellowship. Sameer has published extensively at top-tier machine learning and natural language processing conferences. (http://sameersingh.org)


Explaining Black-Box Machine Learning Predictions

Machine learning is at the forefront of many recent advances in science and technology, enabled in part by the sophisticated models and algorithms that have been recently introduced. However, as a consequence of this complexity, machine learning essentially acts as a black-box as far as users are concerned, making it incredibly difficult to understand, predict, or "trust" their behavior. In this talk, I will describe our research on approaches that explain the predictions of ANY classifier in an interpretable and faithful manner.