Patrick Hall

Patrick Hall

Patrick Hall

Senior Director - Product

About

Patrick Hall is a senior director for data science products at H2o.ai where he focuses mainly on model interpretability. Patrick is also currently an adjunct professor in the Department of Decision Sciences at George Washington University, where he teaches graduate classes in data mining and machine learning. Prior to joining H2o.ai, Patrick held global customer facing roles and R & D research roles at SAS Institute. He holds multiple patents in automated market segmentation using clustering and deep neural networks. Patrick was the 11th person worldwide to become a Cloudera certified data scientist. He studied computational chemistry at the University of Illinois before graduating from the Institute for Advanced Analytics at North Carolina State University.


Intepretable Machine Learning

Usage of AI and machine learning models is likely to become more commonplace as larger swaths of the economy embrace automation and data-driven decision-making. While these predictive systems can be quite accurate, they have been treated as inscrutable black boxes in the past, that produce only numeric predictions with no accompanying explanations. Unfortunately, recent studies and recent events have drawn attention to mathematical and sociological flaws in prominent weak AI and ML systems, but practitioners usually don’t have the right tools to pry open machine learning black-boxes and debug them. This presentation introduces several new approaches to that increase transparency, accountability, and trustworthiness in machine learning models. If you are a data scientist or analyst and you want to explain a machine learning model to your customers or managers (or if you have concerns about documentation, validation, or regulatory requirements), then this presentation is for you!